МОДЕЛИРОВАНИЕ ПОДАЧИ ТОПЛИВА В ДВИГАТЕЛЬ АВТОМОБИЛЯ

Целина Максим Олегович, ст. гр. Ам-53-18

Приоритетными направлениями по повышению экологической безопасности автомобилей можно выделить следующие шаги: совершенствование конструкции автомобиля, применение альтернативных видов и прогрессивных методов очитки топлива, совершенствование системы организации и регулирования дорожного движения, мониторинг выбросов вредных веществ в условиях эксплуатации, совершенствование нормативно правовой базы [1].

Расход топлива характеризует количество углеводородов, которое поступило в цилиндр двигателя. В работе [2] была предложена следующая формула расчета расхода топлива:

$$Q_a = \frac{100 \cdot K_{uu} \cdot M_a}{H_{_H} \cdot \rho_m \cdot \eta_a} \quad \pi/100 \text{ km}, \tag{1}$$

где $H_{_{\scriptscriptstyle H}}$ - низшая теплота сгорания, кДж/кг;

 ρ_m - плотность топлива, г/см³;

 K_{uu} – шум ускорения дороги, м/с²;

 M_a - масса автомобиля, кг;

 η_a - КПД автомобиля.

Шум ускорения характеризует дорожные и транспортные условия эксплуатации [3]:

$$K_{u} = (g \cdot i + 0.077 \cdot kF \cdot V_a^2 / M_a + 0.1 \cdot g \cdot \beta \cdot \dot{V}_a) \quad \text{m/c}^2,$$
 (2)

где g - ускорение свободного падения, м/ c^2 ;

і - уклон дороги;

kF - фактор обтекаемости, $H \cdot c^2 \cdot M^{-4}$;

 $V_a\,$ - средняя техническая скорость движения, км/ч;

 β - коэффициент учета вращающих масс;

 \dot{V}_a - ускорение автомобиля, м/c².

Слагаемое $g \cdot \beta \cdot \dot{V}_a$ достаточно точно рассчитывается по формуле $0.0023 \cdot V_a$ м/с², а при малых и средних установившихся скоростях этим слагаемым можно пренебречь. Поскольку суммарное сопротивление дороги равно $\psi = f + i$, а соотношение потерь на сопротивления качению колеса составляет 60 % от потерь на преодоление уклона дороги – 40 %, тогда:

$$\psi \approx 0.8/V_a \approx 0.48/V_a + 0.32/V_a$$
 (3)

С учетом вышеизложенного, шум ускорения K_{uu} для автомобиля ЗИЛ-431410 может быть рассчитан по формуле:

$$K_{uu} = \frac{3.14}{V_a} + \frac{0.185 \cdot V_a^2}{M_a} + 0.00023 \cdot V_a \text{ m/c}^2.$$
 (4)

Максимальное ускорение автомобиля на прямой передаче при разгоне при максимальном использовании мощности двигателя изменяется в пределах $0,2\ldots0,6$ м/с². Средние значения K_{uu} для груженого автомобиля 3ИЛ-431410 равно 0.11 ± 0.01 , для порожнего -0.15.

Низшая теплота сгорания $H_{_{\scriptscriptstyle H}}$ характеризует качество топлива, а его значение в расчетах можно принимать:

- для бензинового двигателя $H_u = 44000 \text{ кДж/кг}$,
- для дизельного двигателя $H_u = 43000 \,$ кДж/кг.

С учетом зависимости (4) и значения низшей теплоты сгорания для бензина, формула расхода топлива для автомобиля ЗИЛ-431410 примет следующий вид

$$Q_a = 0.00307 \cdot \frac{M_a}{\eta_a} \cdot \left(\frac{3.14}{V_a} + \frac{0.185 \cdot V_a^2}{M_a} + 0.00023 \cdot V_a \right) \quad \pi/100 \text{ km}. \tag{5}$$

В этой формуле масса автомобиля M_a принимается исходя из технической характеристики автомобиля и перевозимого груза. Скорость автомобиля зависит от режима движения, выбираемого с учетом правил движения и условий эксплуатации. КПД автомобиля η_a зависит конструктивных особенностей автомобиля.

Значение КПД автомобиля также зависит от режимов работы машины, через произведение индикаторного (η_i) и механического ($\eta_{\scriptscriptstyle M}$) КПД двигателя, КПД трансмиссии ($\eta_{\scriptscriptstyle MD}$) и колес ($\eta_{\scriptscriptstyle K}$), т.е. [3]

$$\eta_a = \eta_i \cdot \eta_m \cdot \eta_{mp} \cdot \eta_{\kappa} \,. \tag{6}$$

В таблице 1 приведены расчетные значения КПД индикаторного (η_i), механического КПД ($\eta_{\scriptscriptstyle M}$), КПД трансмиссии ($\eta_{\scriptscriptstyle mp}$), КПД колеса ($\eta_{\scriptscriptstyle K}$) и общего КПД автомобиля ЗИЛ 431410 с грузом [4].

Таблица 1 - Расчетные значения КПД автомобиля

Скорость, км/ч	Коэффициент полезного действия					
	η_a	η_i	$\eta_{_{\mathcal{M}}}$	η_{mp}	η_{κ}	η_a
60	0,118	0,315	0,830	0,80	0,600	0,125
47	0,092	0,307	0,790	0,83	0,530	0,106
38	0,077	0,304	0,774	0,86	0,470	0,095
32	0,069	0,303	0,763	0,88	0,442	0,089
26	0,065	0,302	0,750	0,91	0,410	0,084

Приведенная методика может быть использована для расчета нормативных значений расхода топлива для автомобилей. Данная методика более полно учитывает конструктивные параметры и условия эксплуатации транспортного средства. Расчетные значения расхода топлива могут быть отправной точкой в процессе диагностирования технического состояния автомобилей.

Литература

- 1 Müller F. Ecological indicators: Theoretical fundamentals of consistent applications in environmental management / Edited by Felix Müller and Roman Lenz // Ecological Indicators. Volume 6, Issue 1, Pages 1-5 (January 2006). ISSN: 1470-160X.
- 2 Говорущенко Н.Я. Новая методика нормирования расхода топлива транспортных машин (метод четырех КПД) / Н.Я. Говорущенко, С.И. Кривошапов. // Автомобильный транспорт : Сб. научн. тр. -2004. № 15. С. 21-25.
- 3 Кривошапов С.И. Разработка методики и алгоритма общего диагностирования автомобилей по изменению коэффициента полезного действия : автореф. канд. техн. наук : 05.22.10 / С.И. Кривошапов. Харьков, ХГАДТУ, 1999. 216 с
- 4 Кривошапов С.И. Алгоритм расчета КПД транспортных машин / С.И. Кривошапов, Е.Ю. Говорущенко // Весник ХНАДУ. 2003. № 20. С. 34-36.

Научный консультант: Кривошапов С.И., доц. каф. ТЭСА